RSS

ORGANEL SEL

A. MEMBRAN SEL
1. STRUKTUR MEMBRAN SEL
Sel memiliki sistem penyimpanan materi di dalam sel yang serupa dengan suatu kontainer yang berupa membran plasma, suatu lapisan tipis yang tidak dapat diamati dengan mkikroskop cahaya. Membran plasma ini memisahkan isi sel dari lingkungannya. Isi sel (cairan intra sel) berbeda dari lingkungan luarnya, misalnya dalam hal kandungan ion.
Sistem kompartementasi dapat terjadi karena adanya sistem membran plasma (membran sel) yang mampu mencegah proses difusi atau perpindahan molekul- molekul tertentu dari dalam ke luar atau sebaliknya dari luar ke dalam sistem membran. Kompartementasi ini memungkinkan masing-masing organel mempunyai fungsi khusus.
Semua membran sel secara umum tersusun oleh lipid dan protein, disamping juga karbohidrat dan memiliki struktur umum yang sama. Lipid, protein dan karbohidrat tersebut secara bersama menyusun membran plasma atau membran internal.
A. Lipida Membran
Lima puluh persen (50 %) dari komponen membran plasma adalah molekul lipid yang tidak larut dalam air, dan sangat mudah larut dalam pelarut organik, sedang sisa dari komponen tersebut sebagian besar adalah protein. Molekul-molekul lipid tersusun secara teratur sebagai dua lapisan lemak (lipida bilayer) setebal 5 nm. Lipid bilayer ini merupakan barrier yang semipermiabel untuk berbagai molekul yang larut dalam air.











Ada tiga macam molekul lipid yang terdapat pada lipid membran yaitu phospolipid (yang terbanyak), cholesterol, dan glicolipid. Ketiga jenis lemak tersebut bersifatamphipatic atauamphipilic, yang berarti mempunyai dua sifat yaitu bersifat hidrophilic (senang pada air/polar) dan hidrophobic (tidak senang air/non-polar). Sebagai contoh, phospolipid molekul mempunyai gugus kepala hidrophilic yang sifatnya non-polar yang dinamakan hidrophobic hidrocarbon tail. Sebagian phospolipid dan glikolipid membentuk bilayer secara spontan apabila berada dalam lingkungan air. Sifat inilah yang menyebabkan membran sel dapat menutup kembali secara spontan apabila robek atau rusak. Sedangkan sifat penting lainnya dari membran plasma adalah fluiditasnya, oleh karena sifat ini sangat menentukan fungsi dari membran plasma.Fluiditas Lipida blayer dan kolesterol
Keenceran lipid bilayer ditentukan oleh komposisinya yaitu macam asam lemak (jenuh dan tidak jenuh) dan kolesterol. Makin banyak kandungan asam lemak tidak jenuh menyebabkan lapisan lipida makin encer. Membran plasma dapat mengalami perubahan fisika kimia (transisi fase) yaitu dari fase encer (liquid state) menjadi fase seperti agar (gel state). Jika membran banyak mengandung asam lemak tidak jenuh, perubahan fase encer menjadi fase gel lebih sukar terjadi, artinya untuk terjadinya perubahan fase memerlukan suhu yang lebih rendah.
B. Protein Membran

Walaupun struktur dasar dari membran adalah molekul lipid, namun fungsi fisiologis dan patologis dari membran disebabkan oleh adanya protein yang tertanam dalam lipid bilayer tersebut.a. Difusi
Difusi dapat diartikan perpindahan zat (padat, cair, dan gas) dari larutan konsentrasi tinggi (hipertonis) ke larutan dengan konsentrasi rendah (hipotenis). Dengan kata lain setiap zat akan berdifusi menuruni gradien konsentrasinya. Hasil dari difusi adalah konsentrasi yang sama antara larutan tersebut dinamakan isotonis.
Kecepatan zat berdifusi melalui membran sel tidak hanya tergantung pada gradien konsentrasi, tetapi juga pada besar, muatan, dan daya larut dalam lemak (lipid). Membran sel kurang permeabel terhadap ion-ion (Na+, Cl–, K+) dibandingkan dengan molekul kecil yang tidak bermuatan. Dalam keadaan yang sama molekul kecil lebih cepat berdifusi melalui membran sel daripada molekul besar. Molekul-molekul yang bersifat hidrofobik dapat bergerak dengan mudah melalui membran daripada molekul-molekul hidrofolik. Molekul-molekul yang besar dan ion dapat bergerak melalui membran.
b. Difusi terfasilitasi
Difusi terfasilitasi melibatkan difusi dari molekul polar dan ion melewati membran dengan bantuan protein transpor. Protein transpor merupakan protein khusus yang menyediakan suatu ikatan ???? sik bagi molekul yang sedang bergerak. Protein transpor juga merentangkan membran sel sehingga menyediakan suatu mekanisme untuk pergerakan molekul. Difusi terfasilitasi juga merupakan transpor pasif karena hanya mempercepat proses difusi dan tidak merubah arah gradien konsentrasi.
c. Osmosis
Osmosis merupakan difusi air melalui selaput semipermeabel. Air akan bergerak dari daerah yang mempunyai konsentrasi larutan rendah ke daerah yang mempunyai konsentrasi larutan tinggi. Tekanan osmosis dapat diukur dengan suatu alat yang disebut osmometer. Air akan bergerak dari daerah dengan tekanan osmosis rendah ke daerah dengan tekanan osmosis tinggi. Sel akan mengerut jika berada pada lingkungan yang mempunyai konsentrasi larutan lebih tinggi. Hal ini terjadi karena air akan keluar meninggalkan sel secara osmosis. Sebaliknya jika sel berada pada lingkungan yang hipotonis (konsentrasi rendah) sel akan banyak menyerap air, karenaair berosmosis dari lingkungan ke dalam sel.

. Transpor Aktif
Pada transpor aktif diperlukan energi dari dalam sel untuk melawan gradien konsentrasi. Transpor aktif sangat diperlukan untuk memelihara keseimbangan molekul-molekul di dalam sel. Sumber energi untuk transpor aktif adalah ATP (adenosin trifosfat).
Transpor aktif primer dan sekunder
Transpor aktif primer membutuhkan energi dalam bentuk ATP, sedangkan transpor aktif sekunder memerlukan transpor yang tergantung pada potensial membran. Kedua jenis transpor tersebut saling berhubungan erat karena transpor aktif primer akan menciptakan potensial membran dan ini memungkinkan terjadinya transpor aktif sekunder.
Transpor aktif primer dicontohkan pada keberadaan ion K+ dan Na+ dalam membran. Kebanyakan sel memelihara konsentrasi K+ lebih tinggi di dalam sel daripada di luar sel. Sementara konsentrasi Na+ di dalam sel lebih kecil daripada di luar sel. Transpor aktif sekunder dicontohkan pada asam amino dan glukosa dengan molekul pengangkutannya berupa protein transpor khusus. Pengangkutan tersebut bersama dengan pengangkutan Na+ untuk berdifusi ke dalam sel. Pengangkutan Na+ adalah transpor aktif primer yang memungkinkan terjadinya pontensial membran, sehingga asam amino dan glukosa dapat masuk ke dalam sel.
. Transpor Aktif
Pada transpor aktif diperlukan energi dari dalam sel untuk melawan gradien konsentrasi. Transpor aktif sangat diperlukan untuk memelihara keseimbangan molekul-molekul di dalam sel. Sumber energi untuk transpor aktif adalah ATP (adenosin trifosfat).
Transpor aktif primer dan sekunder
Transpor aktif primer membutuhkan energi dalam bentuk ATP, sedangkan transpor aktif sekunder memerlukan transpor yang tergantung pada potensial membran. Kedua jenis transpor tersebut saling berhubungan erat karena transpor aktif primer akan menciptakan potensial membran dan ini memungkinkan terjadinya transpor aktif sekunder.
Transpor aktif primer dicontohkan pada keberadaan ion K+ dan Na+ dalam membran. Kebanyakan sel memelihara konsentrasi K+ lebih tinggi di dalam sel daripada di luar sel. Sementara konsentrasi Na+ di dalam sel lebih kecil daripada di luar sel. Transpor aktif sekunder dicontohkan pada asam amino dan glukosa dengan molekul pengangkutannya berupa protein transpor khusus. Pengangkutan tersebut bersama dengan pengangkutan Na+ untuk berdifusi ke dalam sel. Pengangkutan Na+ adalah transpor aktif primer yang memungkinkan terjadinya pontensial membran, sehingga asam amino dan glukosa dapat masuk ke dalam sel.
3.Endositosis dan Eksositosis
Molekul besar, seperti protein dan polisakarida, umumnya melintasi membran dengan mekanisme yang berbeda yang melibatkan vesikula. Sel mensekresikan makromolekul dengan cara menggabungkan vasikula dengan membran plasma, hal ini biasa disebut dengan eksositosis. Banyak sel sekretori menggunakan eksositosis untuk mengirim keluar produk-produk mereka. Misalnya sel tertentu dalam pankreas menghasilkan hormon insulin dan mensekresikan ke dalam darah melalui eksositosis. Contoh lain ialah neuron, yang menggunakan eksositosis untuk melepaskan sinyal kimiawi yang merangsang neuron lain atau sel otot.
Pada endositosis, sel memasukkan makromolekul dan materi yang sangat kecil dengan cara membentuk vesikula baru dari membran plasma. Langkah-langkahnya pada dasarnya merupakan kebalikan dari eksositosis. Sebagian kecil luas membran plasma terbenam ke dalam membentuk kantong. Begitu kantong ini semakin dalam, kantong terjepit, membentuk vesikula yang berisi materi yang telah terdapat diluar selnya.
Terdapat tiga jenis endositosis yaitu :
1. Fagositosis (pemakan seluler), sel menelan suatu partikel dengan pseudopod yang membalut disekeliling partikel tersebut dan membungkusnya di dalam kantong berlapis-membran yang cukup besar untuk digolongkan sebagai vakuola.
2. Pinositosis (peminum seluler), sel “meneguk” tetesan fluida ekstraseluler dalam vesikula kecil. Karena salah satu atau seluruh zat terlarut yang larut dalam tetesan tersebut dimasukkan ke dalam sel, pinosistosis tidak spesifik dalam substansi yang ditranspornya.
3. Endositosis yang diperantarai reseptor, hampir sama dengan pinositosis hanya saja, selektif terhadap substansi yang ditranspornya. Endositosis yang diperantarai reseptor memungkinkan sel dapat meperoleh substansi spesifik dalam jumlah yang melimpah sekalipun substansi itu mungkin saja konsentrasinya tidak tinggi dalam fluida seluler. Misalnya, sel manusia menggunakan proses ini untuk menyerap kolesterol dan digunakan dalam sintesis membran dan sebagai prekursor untuk sintesis steroid lainnya.

4. FUNGSI MEMBRAN SEL
• Sebagai reseptor (penerima) rangsang dari luar, seperti hormon dan bahan kimia lain, baik dari lingkungan luar maupun dari bagian lain dalam organisme itu sendiri.
• Melindungi agar isi sel tidak keluar meninggalkan sel.
• Mengontrol zat-zat yang boleh masuk maupun keluar meninggalkan sel. Hal inilah yang menyebabkan membran plasma bersifat semipermeabel (selektif permeabel).
• Sebagai tempat terjadinya kegiatan biokimiawi, seperti reaksi oksidasi dan respirasi.
B. RETIKULUM ENDOPLASMA
Retikulum Endoplasma (RE, atau endoplasmic reticula) adalah organel yang dapat ditemukan pada semua sel eukariotik.

Retikulum Endoplasma merupakan bagian sel yang terdiri atas sistem membran. Di sekitar Retikulum Endoplasma adalah bagian sitoplasma yang disebut sitosol. Retikulum Endoplasma sendiri terdiri atas ruangan-ruangan kosong yang ditutupi dengan membran dengan ketebalan 4 nm (nanometer, 10-9 meter). Membran ini berhubungan langsung dengan selimut nukleus atau nuclear envelope. Membran Retikulum Endoplasma merupakan kelanjutan dari membran nukleus hingga ke membran plasma.
Jadi, RE merupakan saluran penghubung antara nukleus dengan bagian luar sel.
Pada bagian-bagian Retikulum Endoplasma tertentu, terdapat ribuan ribosom atau ribosome. Ribosom merupakan tempat dimana proses pembentukan protein terjadi di dalam sel. Bagian ini disebut dengan Retikulum Endoplasma Kasar atau Rough Endoplasmic Reticulum. Kegunaan daripada Retikulum Endoplasma Kasar adalah untuk mengisolir dan membawa protein tersebut ke bagian-bagian sel lainnya. Kebanyakan protein tersebut tidak diperlukan sel dalam jumlah banyak dan biasanya akan dikeluarkan dari sel. Contoh protein tersebut adalah enzim dan hormon.
Sedangkan bagian-bagian Retikulum Endoplasma yang tidak diselimuti oleh ribosom disebut Retikulum Endoplasma Halus atau Smooth Endoplasmic Reticulum. Kegunaannya adalah untuk membentuk lemak dan steroid. Sel-sel yang sebagian besar terdiri dari Retikulum Endoplasma Halus terdapat di beberapa organ seperti hati.
Retikulum endoplasma memiliki struktur yang menyerupai kantung berlapis-lapis. Kantung ini disebut cisternae. Fungsi retikulum endoplasma bervariasi, tergantung pada jenisnya. Retikulum Endoplasma (RE) merupakan labirin membran yang demikian banyak sehingga retikulum endoplasma melipiti separuh lebih dari total membran dalam sel-sel eukariotik. (kata endoplasmik berarti “di dalam sitoplasma” dan retikulum diturunkan dari bahasa latin yang berarti “jaringan”).
Pengertian lain menyebutkan bahwa RE sebagai perluasan membran yang saling berhubungan yang membentuk saluran pipih atau lubang seperti tabung di dalam sitoplsma.Lubang/saluran tersebut berfungsi membantu gerakan substansi-substansi dari satu bagian sel ke bagian sel lainnya.
Ada tiga jenis retikulum endoplasma:
RE kasar Di permukaan RE kasar, terdapat bintik-bintik yang merupakan ribosom. Ribosom ini berperan dalam sintesis protein. Maka, fungsi utama RE kasar adalah sebagai tempat sintesis protein. RE halus Berbeda dari RE kasar, RE halus tidak memiliki bintik-bintik ribosom di permukaannya. RE halus berfungsi dalam beberapa proses metabolisme yaitu sintesis lipid, metabolisme karbohidrat dan konsentrasi kalsium, detoksifikasi obat-obatan, dan tempat melekatnya reseptor pada protein membran sel. RE sarkoplasmik RE sarkoplasmik adalah jenis khusus dari RE halus. RE sarkoplasmik ini ditemukan pada otot licin dan otot lurik. Yang membedakan RE sarkoplasmik dari RE halus adalah kandungan proteinnya. RE halus mensintesis molekul, sementara RE sarkoplasmik menyimpan dan memompa ion kalsium. RE sarkoplasmik berperan dalam pemicuan kontraksi otot.
RE halus berfungsi dalam berbagai macam proses metabolisme, termasuk sintesis lipid, metabolisme karbohidrat, dan menawarkan obat dan racun.
"RE berfungsi sebagai alat transportasi zat-zat di dalam sel itu sendiri"
Jaring-jaring endoplasma adalah jaringan keping kecil-kecil yang tersebar bebas di antara selaput selaput di seluruh sitoplasma dan membentuk saluran pengangkut bahan. Jaring-jaring ini biasanya berhubungan dengan ribosom (titik-titik merah) yang terdiri dari protein dan asam nukleat, atau RNA. Partikel-partikel tadi mensintesis protein serta menerima perintah melalui RNA tersebut.

Jadi fungsi RE adalah mendukung sintesis protein dan menyalurkan bahan genetic antara inti sel dengan sitoplasma.



Fungsi Retikulum Endoplasma :
• Menampung protein yang disintesis oleh ribosom untuk disalurkan ke kompleks golgi dan akhirnya dikeluarkan dari sel.
(RE kasar)
• Mensintesis lemak dan kolesterol
(RE kasar dan RE halus)
• Menetralkan racun (detoksifikasi) misalnya RE yang ada di dalam sel-sel hati.
• Transportasi molekul-molekul dan bagian sel yang satu ke bagian sel yang lain (RE kasar dan RE halus)
C. RIBOSOM

Ribosom berupa organel kecil berdiameter antara 17-20 µm yang tersusun oleh RNA robosom dan protein. Ribosom terdapat pada semua sel hidup. Ribosom merupakan tempat sel membuat atau mensintesisi protein. Sel yang memiliki laju sintesis protein yang tinggi secara khusus memiliki jumlah ribosom yang sangat banyak. Misal, sel hati manusia memiliki beberapa juta ribosom. Tidak mengejutkan jika sel yang aktif dalam mensintesis protein juga memiliki nukleus yang terlihat jelas.
Ribosom ada yang terdapat bebas di sitoplasma atau melekat pada retikulum endoplasma, yang disebut RE kasar. Tiap ribosom terdiri dari 2 sub unit yang berbeda ukuran. Dua sub unit ini saling berhubungan dalam suatu ikatan yang distabilkan oleh ion magnesum.
Pada saat sintesis protein ribosom mengelompok menjadi poliribosom (polisom). Sebagian besar protein dibuat oleh ribosom bebas akan berfungsi di dalam sitosol. Sedang ribosom terikat umumnya membuat protein yang dimasukkan ke dalam membran, untuk pembungkusan dalam organel tertentu seperti lisosom atau dikirim ke luar sel.
Ribosom bebas maupun terikat secara struktural identik dan dapat saling bertukar tempat. Sel dapat menyesuaikan jumlah relatif dari masing-masing jenis ribosom begitu metabolismenya berubah.

D. BADAN GOLGI


Gbr. Badan Golgi di dalam Sel
Badan Golgi (disebut juga aparatus Golgi, kompleks Golgi atau diktiosom) adalah organel yang dikaitkan dengan fungsi ekskresi sel, dan struktur ini dapat dilihat dengan menggunakan mikroskop cahaya biasa. Organel ini terdapat hampir di semua sel eukariotik dan banyak dijumpai pada organ tubuh yang melaksanakan fungsi ekskresi, misalnya ginjal. Setiap sel hewan memiliki 10 hingga 20 badan Golgi, sedangkan sel tumbuhan memiliki hingga ratusan badan Golgi. Badan Golgi pada tumbuhan biasanya disebut diktiosom.
Badan Golgi ditemukan oleh seorang ahli histologi dan patologi berkebangsaan Italia yang bernama Camillo Golgi.

Mikrograf badan Golgi, terlihat sebagai tumpukan cincin setengah lingkaran berwarna hitam di bagian bawah gambar. Sejumlah vesikel bulat terlihat di sekitar organel ini.
Struktur badan Golgi berupa berkas kantung berbentuk cakram yang bercabang menjadi serangkaian pembuluh yang sangat kecil di ujungnya. Karena hubungannya dengan fungsi pengeluaran sel amat erat, pembuluh mengumpulkan dan membungkus karbohidrat serta zat-zat lain untuk diangkut ke permukaan sel. Pembuluh itu juga menyumbang bahan bagi pembentukan dinding sel.
Badan golgi dibangun oleh membran yang berbentuk tubulus dan juga vesikula. Dari tubulus dilepaskan kantung-kantung kecil yang berisi bahan-bahan yang diperlukan seperti enzim–enzim pembentuk dinding sel.
Badan Golgi merupakan bagian sel yang hampir serupa dengan Retikulum Endoplasma. Hanya saja, Badan Golgi terdiri dari berlapis-lapis ruangan yang juga ditutupi oleh membran. Badan Golgi mempunyai 2 bagian, yaitu bagian cis dan bagian trans. Bagian cis menerima vesikel-vesikel [vesicle] yang pada umumnya berasal dari Retikulum Endoplasma Kasar. Vesikel ini akan diserap ke ruangan-ruangan di dalam Badan Golgi dan isi dari vesikel tersebut akan diproses sedemikian rupa untuk penyempurnaan dan lain sebagainya. Ruangan-ruangan tersebut akan bergerak dari bagian cis menuju bagian trans. Di bagian inilah ruangan-ruangan tersebut akan memecahkan dirinya dan membentuk vesikel, dan siap untuk disalurkan ke bagian-bagian sel yang lain atau ke luar sel.

Skema transpor di dalam badan Golgi. 1. Vesikel retikulum endoplasma, 2. Vesikel eksositosis, 3. Sisterna, 4. Membran sel, 5. Vesikel sekresi.

Fungsi badan golgi:
1. Membentuk kantung (vesikula) untuk sekresi. Terjadi terutama pada sel-sel kelenjar kantung kecil tersebut, berisi enzim dan bahan-bahan lain.
2. Membentuk membran plasma. Kantung atau membran golgi sama seperti membran plasma. Kantung yang dilepaskan dapat menjadi bagian dari membran plasma.
3. Membentuk dinding sel tumbuhan
4. Fungsi lain ialah dapat membentuk akrosom pada spermatozoa yang berisi enzim untuk memecah dinding sel telur dan pembentukan lisosom.
5. Tempat untuk memodifikasi protein
6. Untuk menyortir dan memaket molekul-molekul untuk sekresi sel
7. Untuk membentuk lisosom

Gbr. Struktur Badan Golgi

E. LISOSOM
Lisosom berasal dari kata lyso = pencernaan dan soma = tubuh. Lisosom merupakan kantong yang berbentuk agak bulat dikelilingi membran tunggal yang digunakan sel untuk mencerna makromolekul. Lisosom berisi enzim yang dapat memecahkan (mencerna) polisakarida, lipid, fosfolipid, asam nukleat, dan protein. Enzim itu dinamakan lisozim. Lisosom berperan dalam pencernaan intra sel, misalnya pada protozoa atau sel darah putih, juga dalam autofagus.
Pada amoeba dan banyak protista lain makan dengan jalan menelan organisme atau partikel makanan lain yang lebih kecil, suatu proses yang disebut fagositosis (berasal dari bahasa Yunani, phagein yang berarti “memakan” dan kytos yang berarti wadah. Wadah disini yang dimaksud adalah sel). Sebagian sel manusia juga melakukan fagositosis, diantaranya adalah makrofage, sel membantu mempertahankan tubuh dengan merusak bakteri dan penyerang lainnya.
Perusakan sel terprogram oleh enzim lisosomnya sendiri penting dalam perkembangan organisme. Misal, pada waktu kecebong berubah menjadi katak, ekornya diserap secara bertahap. Sel-sel ekor yang kaya akan lisosom mati dan hasil penghancuran digunakan di dalam pertumbuhan sel-sel baru yang berkembang. Pada perkembangan tangan embrio manusia yang semula berselaput hingga lisosom mencerna jaringan diantara jari-jari tangan tersebut sehingga terbentuk jari yang terpisah seperti yang kita punyai sekarang.
Berbagai kelainan turunan yang disebut sebagai penyakit penyimpangan lisosom (lysosomal storage disease) mempengaruhi metabolism lisosom. Seseorang yang ditimpa penyakit penyimpangan ini kekurangan salah satu enzim hidrilitik aktif yang secara normal ada dalam lisosom. Lisosom melahap substat yang tidak tercerna yang mulai mengganggu fungsi seluler lainnya. Pada penyakit Pompe misalnya, hati dirusak oleh akumulasi glikogenakibat ketiadaan enzil lisosomyang dibutuhkan untuk memecah polisakarida. Pada penyakit Tay-Sachs, enzim pencerna lipid hilang atau inaktif, dan otak dirusak oleh akumulasi lipid dalam sel. Untunglah penyakit penyimpangan ini jarang ada pada populasi umum. Pada masa mendatang mungkin kita dapat mengobati penyakit penyimpangan ini dengan menyuntikkan enzim yang hilang bersama dengan molekul adaptor yang menargetkan enzim-enzim untuk penelanan oleh sel dan penggabungan dengan lisosom.

Pembentukan Lisosom
Enzim lisosom adalah suatu protein yang diproduksi oleh ribosom dan kemudian masuk ke dalam RE. Dari RE enzim dimasukkan ke dalam membran kemudian dikeluarkan ke sitoplasma menjadi lisosom. Selain ini ada juga enzim yang dimasukkan terlebih dahulu ke dalam golgi. Oleh golgi, enzim itu dibungkus membran kemudian dilepaskan di dalam sitoplasma. Jadi proses pembentukan lisosom ada dua macam, pertama dibentuk langsung oleh RE dan kedua oleh golgi.


Gbr. Lisosom, tampak pada sel
F. MITOKONDRIA
Mitokondria, kondriosom (bahasa Inggris: chondriosome, mitochondrion, plural:mitochondria) adalah organel tempat berlangsungnya fungsi respirasi sel makhluk hidup, selain fungsi selular lain, seperti produksi energi, metabolisme asam lemak, biosintesis pirimidina, homeostasis kalsium dan transduksi sinyal selular.
Mitokondria merupakan organel yang paling penting karena di sinilah respirasi yang merupakan proses perombakan atau katabolisme untuk menghasilkan energi atau tenaga bagi berlangsungnya proses hidup, dihasilkan dalam bentuk adenosina trifosfat. Dengan demikian, mitokondria adalah "pembangkit tenaga" bagi sel.
Mitokondria merupakan penghasil energi karena berfungsi untuk respirasi. Ada yang bulat, oval, silindris, seperti gada, seperti raket, dan ada pula yang bentuknya tidak beraturan. Namun secara umum dapat dikatakan bahwa mitokondria berbentuk butiran atau benang. Mitokondria mempunyai sifat plastis, aetinya bentuknya mudah berubah. Ukurannya seperti bakteri dengan diameter 0,5-1 µm dan panjangnya 3-10 µm.
Penyebaran dan jumlah mitokondria di dalam sel tidak sama. Pada sel sperma, mitokondria tampak berderet-deret pada bagian ekor yang digunakan untuk bergerak.
Mitokondria memiliki dua membran, yaitu membran luar dan membran dalam. Struktur membran luar mirip dengan membran plasma. Pada membran dalam terjadi pelekukan kearah dalam membentuk krista. Dengan adanya krista ini, permukaan membran dalam menjadi semakin luas sehingga proses respirasi sel semakin efektif. Proses respirasi berlangsung pada membran dalam mitokondria (pada krista) dan matriks. Matriks adalah cairan yang berada di dalam mitokondria dan bersifat sebagai gel. Matriks tersusun atas air, protein, enzim pernapasan, garam, DNA, dan ion-ion. Enzim-enzim pernapasan itu sangat penting bagi proses pembentukan ATP. Reaksi pernapasan yang berlangsung di dalam mitokondria adalah reaksi Dekarbosilasi oksidatif, daur krebs, dan transfer elektron.

Mitokondria mempunyai dua lapisan membran, yaitu lapisan membran luar dan lapisan membran dalam. Lapisan membran dalam ada dalam bentuk lipatan-lipatan yang sering disebut dengan cristae. Di dalam Mitokondria terdapat 'ruangan' yang disebut matriks, dimana beberapa mineral dapat ditemukan. Sel yang mempunyai banyak Mitokondria dapat dijumpai di jantung, hati, dan otot.
Keberadaan mitokondria didukung oleh hipotesis endosimbiosis yang mengatakan bahwa pada tahap awal evolusi sel eukariota bersimbiosis dengan prokariota (bakteri) . Kemudian keduanya mengembangkan hubungan simbiosis dan membentuk organel sel yang pertama. Adanya DNA pada mitokondria menunjukkan bahwa dahulu mitokondria merupakan entitas yang terpisah dari sel inangnya. Hipotesis ini ditunjang oleh beberapa kemiripan antara mitokondria dan bakteri. Ukuran mitokondria menyerupai ukuran bakteri, dan keduanya bereproduksi dengan cara membelah diri menjadi dua. Hal yang utama adalah keduanya memiliki DNA berbentuk lingkar. Oleh karena itu, mitokondria memiliki sistem genetik sendiri yang berbeda dengan sistem genetik inti. Selain itu, ribosom dan rRNA mitokondria lebih mirip dengan yang dimiliki bakteri dibandingkan dengan yang dikode oleh inti sel eukariot.
Secara garis besar, tahap respirasi pada tumbuhan dan hewan melewati jalur yang sama, yang dikenal sebagai daur atau siklus Krebs.

Struktur umum suatu mitokondria
Mitokondria banyak terdapat pada sel yang memilki aktivitas metabolisme tinggi dan memerlukan banyak ATP dalam jumlah banyak, misalnya sel otot jantung. Jumlah dan bentuk mitokondria bisa berbeda-beda untuk setiap sel. Mitokondria berbentuk elips dengan diameter 0,5 µm dan panjang 0,5 – 1,0 µm. Struktur mitokondria terdiri dari empat bagian utama, yaitu membran luar, membran dalam, ruang antar membran, dan matriks yang terletak di bagian dalam membran [Cooper, 2000].
Membran luar terdiri dari protein dan lipid dengan perbandingan yang sama serta mengandung protein porin yang menyebabkan membran ini bersifat permeabel terhadap molekul-molekul kecil yang berukuran 6000 Dalton. Dalam hal ini, membran luar mitokondria menyerupai membran luar bakteri gram-negatif. Selain itu, membran luar juga mengandung enzim yang terlibat dalam biosintesis lipid dan enzim yang berperan dalam proses transpor lipid ke matriks untuk menjalani β-oksidasi menghasilkan asetil-KoA.
Membran dalam yang kurang permeabel dibandingkan membran luar terdiri dari 20% lipid dan 80% protein. Membran ini merupakan tempat utama pembentukan ATP. Luas permukaan ini meningkat sangat tinggi diakibatkan banyaknya lipatan yang menonjol ke dalam matriks, disebut krista [Lodish, 2001]. Stuktur krista ini meningkatkan luas permukaan membran dalam sehingga meningkatkan kemampuannya dalam memproduksi ATP. Membran dalam mengandung protein yang terlibat dalam reaksi fosforilasi oksidatif, ATP sintase yang berfungsi membentuk ATP pada matriks mitokondria, serta protein transpor yang mengatur keluar masuknya metabolit dari matriks melewati membran dalam.
Ruang antar membran yang terletak diantara membran luar dan membran dalam merupakan tempat berlangsungnya reaksi-reaksi yang penting bagi sel, seperti siklus Krebs, reaksi oksidasi asam amino, dan reaksi β-oksidasi asam lemak. Di dalam matriks mitokondria juga terdapat materi genetik, yang dikenal dengan DNA mitkondria (mtDNA), ribosom, ATP, ADP, fosfat inorganik serta ion-ion seperti magnesium, kalsium dan kalium.
Peran utama mitokondria adalah sebagai pabrik energi sel yang menghasilkan energi dalam bentuk ATP. Metabolisme karbohidrat akan berakhir di mitokondria ketika piruvat di transpor dan dioksidasi oleh O2¬ menjadi CO2 dan air. Energi yang dihasilkan sangat efisien yaitu sekitar tiga puluh molekul ATP yang diproduksi untuk setiap molekul glukosa yang dioksidasi, sedangkan dalam proses glikolisis hanya dihasilkan dua molekul ATP. Proses pembentukan energi atau dikenal sebagai fosforilasi oksidatif terdiri atas lima tahapan reaksi enzimatis yang melibatkan kompleks enzim yang terdapat pada membran bagian dalam mitokondria. Proses pembentukan ATP melibatkan proses transpor elektron dengan bantuan empat kompleks enzim, yang terdiri dari kompleks I (NADH dehidrogenase), kompleks II (suksinat dehidrogenase), kompleks III (koenzim Q – sitokrom C reduktase), kompleks IV (sitokrom oksidase), dan juga dengan bantuan FoF1 ATP Sintase dan Adenine Nucleotide Translocator (ANT).
Mitokondria dapat melakukan replikasi secara mandiri (self replicating) seperti sel bakteri. Replikasi terjadi apabila mitokondria ini menjadi terlalu besar sehingga melakukan pemecahan (fission). Pada awalnya sebelum mitokondria bereplikasi, terlebih dahulu dilakukan replikasi DNA mitokondria. Proses ini dimulai dari pembelahan pada bagian dalam yang kemudian diikuti pembelahan pada bagian luar. Proses ini melibatkan pengkerutan bagian dalam dan kemudian bagian luar membran seperti ada yang menjepit mitokondria. Kemudian akan terjadi pemisahan dua bagian mitokondria.
G. KLOROPLAS
Kloroplas atau Chloroplast adalah plastid yang mengandung klorofil. Di dalam kloroplas berlangsung fase terang dan fase gelap dari fotosintesis tumbuhan. Kloroplas terdapat pada hampir seluruh tumbuhan, tetapi tidak umum dalam semua sel. Bila ada, maka tiap sel dapat memiliki satu sampai banyak plastid. Pada tumbuhan tingkat tinggi umumnya berbentuk cakram (kira-kira 2 x 5 mm, kadang-kadang lebih besar), tersusun dalam lapisan tunggal dalam sitoplasma tetapi bentuk dan posisinya berubah-ubah sesuai dengan intensitas cahaya. Kloroplas matang pada beberapa ganggang , biofita dan likopoda dapat memperbanyak diri dengan pembelahan. Kesinambungan kloroplas terjadi melalui pertumbuhan dan pembelahan proplastid di daerah meristem. Secara khas kloroplas dewasa mencakup dua membran luar yang menyalkuti stroma homogen, di sinilah berlangsung reaksi-reaksi fase gelap. Dalam stroma tertanam sejumlah grana, masing-masing terdiri atas setumpuk tilakoid yang berupa gelembung bermembran, pipih dan diskoid (seperti cakram). Membran tilakoid menyimpan pigmen-pigmen fotosintesis dan sistem transpor elektron yang terlibat dalam fase fotosintesis yang bergantung pada cahaya. Grana biasanya terkait dengan lamela intergrana yang bebas pigmen.
Struktur Kloroplas Kloroplas terdiri atas dua bagian besar, yaitu bagian amplop dan bagian dalam.Bagian amplop kloroplas terdiri dari membran luar yang bersifat sangat permeabel, membran dalam yang bersifat permeabel serta merupakan tempat protein transpor melekat, dan ruang antar membran yang terletak di antara membran luar dan membran dalam. Bagian dalam kloroplas mengandung DNA , RNAs, ribosom, stroma (tempat terjadinya reaksi gelap), dan granum. Granum terdiri atas membran tilakoid (tempat terjadinya reaksi terang) dan ruang tilakoid (ruang di antara membran tilakoid). Pada tanaman C3, kloroplas terletak pada sel mesofil. Contoh tanaman C3 adalah padi (Oryza sativa), gandum (Triticum aestivum), kacang kedelai (Glycine max), dan kentang (Solanum tuberosum). Pada tanaman C4, kloroplas terletak pada sel mesofil dan bundle sheath cell. Contoh tanaman C4 adalah jagung (Zea mays) dan tebu (Saccharum officinarum).


Genom Kloroplas Kloroplas pada tanaman tingkat tinggi merupakan evolusi dari bakteri fotosintetik menjadi organel sel tanaman. Genom kloroplas terdiri dari 121 024 pasang nukleotida serta mempunyai inverted repeats (2 kopi) yang mengandung gen-gen rRNA (16S dan 23S rRNAs) untuk pembentukan ribosom. Genom kloroplas mempunyai subunit yang besar yaitu penyandi ribulosa biphosphate carboxylase. Protein yang terlibat di dalam kloroplas sebanyak 60 protein. 2/3nya diekspresikan oleh gen yang terdapat di inti sel sementara 1/3nya diekspresikan dari genom kloroplas.
H. PLASTIDA
Plastida adalah organel pada sel tumbuhan (dalam arti luas, Viridoplantae). Organel ini paling dikenal dalam bentuknya yang paling umum, kloroplas, sebagai tempat berlangsungnya fotosintesis. Pada kenyataannya, plastida dikenal dalam berbagai bentuk:
• proplastida, bentuk belum "dewasa"
• leukoplas, bentuk dewasa tanpa mengandung pigmen, ditemukan terutama di akar
• kloroplas, bentuk aktif yang mengandung pigmen klorofil, ditemukan pada daun, bunga, dan bagian-bagian berwarna hijau lainnya
• kromoplas, bentuk aktif yang mengandung pigmen karotena, ditemukan terutama pada bunga dan bagian lain berwarna jingga
• amiloplas, bentuk semi-aktif yang mengandung butir-butir tepung, ditemukan pada bagian tumbuhan yang menyimpan cadangan energi dalam bentuk tepung, seperti akar, rimpang, dan batang (umbi) serta biji.
• elaioplas, bentuk semi-aktif yang mengandung tetes-tetes minyak/lemak pada beberapa jaringan penyimpan minyak, seperti endospermium (pada biji)
• etioplas, bentuk semi-aktif yang merupakan bentuk adaptasi kloroplas terhadap lingkungan kurang cahaya; etioplas dapat segera aktif dengan membentuk klorofil hanya dalam beberapa jam, begitu mendapat cukup pencahayaan.
Plastida adalah organel vital pada tumbuhan. Fungsinya adalah sebagai tempat fotosintesis, sintesis asam-asam lemak, serta beberapa fungsi sehari-hari sel.
Secara evolusi plastida dianggap sebagai prokariota yang bersimbiosis ke dalam sel eukariota dan kemudian kehilangan sifat otonomi penuhnya. Teori endosimbiosis ini mirip dengan yang terjadi terhadap mitokondria namun introduksi plastida dianggap terjadi lebih kemudian.

I. PEROKSISOM
Peroksisom (bahasa Inggris: peroxysome) adalah organel yang terbungkus oleh membran tunggal dari lipid dwilapis yang mengandung protein pencerap (reseptor). Peroksisom tidak memiliki genom dan mengandung sekitar 50 enzim, seperti katalase dan ureat oksidase yang mengkristal di pusatnya. Peroksisom ditemukan pada semua sel eukariota.
Peroksisom dianggap sebagai organel primitif yang melakukan semua metabolisme oksigen di dalam sel eukariota tipe awal. Produksi oksigen oleh bakteri fotosintetik akan terakumulasi di atmosfer. Hal ini menyebabkan oksigen menjadi toksik bagi sebagian sel. Peroksisom berperan menurunkan oksigen dalam sel dan melakukan reaksi oksidatif. Berkembangnya mitokondria mengambil alih sebagian besar fungsi oksidatif tersebut dan membuat peroksisom kurang terpakai. Yang tersisa pada era modern sekarang hanya fungsi penting yang tidak dapat dilakukan mitokondria.
Pada tumbuhan terdapat dua macam peroksisom sedangkan pada hewan terdapat satu macam peroksisom.
Salah satu fungsi penting biosintetik dari peroksisom hewan adalah untuk mengkatalisis reaksi pertama dari pembentukan plasmalogen. Plasmalogen merupakan jenis phospolipid terbanyak pada myelin. Kekurangan plasmalogen ini menyebabkan myelin pada sel saraf menjadi abnormal, karena itulah kerusakan peroksisom berujung pada kerusakan saraf.
Peroksisom juga sangat penting dalam tumbuhan. Terdapat dua jenis peroksisom sudah yang diteliti secara ekstensif. Tipe pertama terdapat pada daun, yang berfungsi untuk mengkatalisis produk sampingan dari reaksi pengikatan CO2 pada karbohidrat, yang disebut fotorespirasi. Reaksi ini disebut fotorespirasi karena menggunakan O2 dan melepaskan CO2. Tipe peroksisom lainnya, terdapat dalam biji yang sedang berkecambah. Peroksisom kedua ini, dinamakan glioksisom, mempunyai fungsi penting dalam pemecahan asam lemak, yang tersimpan dalam lemak biji, menjadi gula yang diperlukan untuk pertumbuhan tanaman muda. Proses pengubahan lemak menjadi gula ini dilakukan dengan rangkaian reaksi yang disebut siklus glioksilat.
Dalam siklus glioksilat, dua molekul asetil-KoA dihasilkan dari pemecahan asam lemak, selanjutnya digunakan untuk membuat asam suksinat. Selanjutnya asam suksinat ini meninggalkan peroksisom dan akan diubah menjadi glukosa. Siklus glioksilat ini tidak terjadi pada sel hewan. Hal ini menyebabkan sel hewan tidak dapat mengubah asam lemak menjadi karbohidrat.

Gbr. Penampang Peroksisom (Salah satu Badan mikro)






J. INTI ( NUKLEUS )

Inti sel atau nukleus adalah organel yang ditemukan pada sel eukariotik. Organel ini mengandung sebagian besar materi genetik sel dengan bentuk molekul DNA linier panjang yang membentuk kromosom bersama dengan beragam jenis protein. Gen di dalam kromosom-kromosom inilah yang membentuk genom inti sel.
Fungsi utama nukleus adalah untuk menjaga integritas gen-gen tersebut dan mengontrol aktivitas sel dengan mengelola ekspresi gen. Selain itu, nukleus juga berfungsi untuk mengorganisasikan gen saat terjadi pembelahan sel, memproduksi mRNA untuk mengkodekan protein, sebagai tempat sintesis ribosom, tempat terjadinya replikasi dan transkripsi dari DNA, serta mengatur kapan dan di mana ekspresi gen harus dimulai, dijalankan, dan diakhiri.
Nukleus adalah organel pertama yang ditemukan, yang pertama kali dideskripsikan oleh Franz Bauer pada 1802 dan dijabarkan lebih terperinci oleh ahli botani Skotlandia, Robert Brown, pada tahun 1831. Pada satu sel umumnya ditemukan hanya satu nukleus. Namun demikian, beberapa jaringan tertentu, atau beberapa spesies tertentu memiliki lebih daripada satu nukleus. Inti-inti dalam sel multinuklei ini dapat memiliki peran yang saling mengganti atau saling mengkhususkan diri. Pada Paramecium, terdapat dua inti sel: makronukleus (inti besar) dan mikronukleus (inti kecil). Makronukleus menjamin keberlangsungan hidup, sedangkan mikronukleus bertanggung jawab terhadap reproduksi.
Elemen struktural utama nukleus adalah membran inti, suatu membran ganda fosfolipid yang membungkus keseluruhan organel dan memisahkan bagian inti dengan sitoplasma sel, serta lamina inti, suatu struktur dalam nukleus yang memberi dukungan mekanis seperti sitoskeleton yang menyokong sel secara keseluruhan. Secara garis besar, membran inti terdiri atas tiga bagian, yaitu membran luar, ruang perinuklear, dan membran dalam. Membran luar dari nukleus berkesinambungan dengan retikulum endoplasma (RE) kasar yanh bertaburan dengan ribosom. Sifat membran inti yang tak permeabel terhadap sebagian besar molekul membuat nukleus memerlukan pori inti agar molekul dapat bergerak melintasi membran. Pori nukleus bagaikan terowongan yang terletak pada membran nukleus yang berfungsi menghubungkan nukleoplasma dengan sitosol. Fungsi utama dari pori nukleus adalah untuk sarana pertukaran molekul antara nukleus dengan sitoplasma. Molekul yang keluar, kebanyakan mRNA, digunakan untuk sintesis protein. Pori nukleus tersusun atas 4 subunit, yaitu subunit kolom, subunit anular, subunit lumenal, dan subunit ring. Subunit kolom berfungsi dalam pembentukan dinding pori nukleus, subunit anular berguna untuk membentuk spoke yang mengarah menuju tengah dari pori nukleus, subunit lumenal mengandung protein transmembran yang menempelkan kompleks pori nukleus pada membran nukleus, sedangkan subunit ring berfungsi untuk membentuk permukaan sitosolik (berhadapan dengan sitoplasma) dan nuklear (berhadapan dengan nukleoplasma) dari kompleks pori nukleus.
Meskipun bagian dalam nukleus tidak mengandung badan yang dibatasi oleh membran, isi nukleus tidak seragam dan memiliki beberapa badan subnukleus yang terbentuk dari protein-protein unik, molekul RNA, serta gugus DNA. Contoh utama dari badan subnukleus adalah nukleolus, yang terutama terlibat dalam pembentukan ribosom. Setelah diproduksi oleh nukleolus, ribosom diekspor ke sitoplasma untuk menjalankan fungsi translasi mRNA.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 comments:

Post a Comment